Anunciese Aquí

Registro automático

Acceder con Twitter

top articulo
twitter
facebook
Rss
miércoles 24 de abril del 2024
Lea, publique artículos gratis, y comparta su conocimiento
Usuario Clave ¿Olvidó su clave?
¿Iniciar sesión automáticamente en cada visita?
Inserte su correo electronico

Sistemas de Encendido Electronico Parte 1

veces visto 3831 Veces vista   comentario 1 Comentarios

Repaso General del Fenómeno de Encendido Como bien sabemos, el propósito del sistema de encendido es encender la mezcla aire/combustible dentro de la cámara de combustión en el momento oportuno. También sabemos que para que un motor produzca la mayor eficiencia, la mezcla aire/combustible debe encenderse con el objeto de que la presión máxima debida a la explosión ocurra alrededor de 10 a 15º después del punto muerto superior (PMS). (Lo que acabo de señalar constituye conceptos fundamentales de mecánica básica. Como lector debes comprender lo anterior a la perfección para que puedas manejar los conceptos siguientes. Para los conocedores de este tema, no necesito entrar en más detalles.) Es obvio que dentro del clilindro, la mezcla no se quema instantáneamente: le toma tiempo. Sin embargo, este intervalo de tiempo debe aclararse: es el lapso de tiempo entre que ocurre el encendido inicial de la mezcla hasta el desarrollo de la presión máxima de explosión. La duración de este intervalo de tiempo es de milifracciones de segundo, es un intervalo cambiante y variará dependiendo de la velocidad del motor. Esto significa que el encendido debe ocurrir "antes" cuando la velocidad del motor es elevada y "después", cuando es más lenta. A este fenómeno ya lo conocíamos como "avance y retraso del tiempo". También sabemos bien que en los sistemas antiguos, el tiempo se avanzaba y retardaba con un diafragma y contrapesos en el distribuidor. Además, el encendido debe avanzarse cuando la presión dentro del múltiple es baja (es decir, cuando el vacío es fuerte). Sin embargo, el tiempo de encendido óptimo también es afectado por otros factores además de la velocidad del motor y volumen de aire en el múltiple, tales como la forma de la cámara de combustión, la temperatura dentro de la cámara de combustión, etc. Por estos motivos, los sistemas de encendido electrónico suministran una calidad de encendido ideal para el motor. Repaso del Avance Electrónico del Encendido En el sistema de Avance Electrónico de Encendido, al motor se le proveen características casi idóneas de tiempo de encendido. ¿A qué me refiero? Ya sabemos que la PCM determina el tiempo del encendido basándose en dos cosas: a) las señales de entrada de sensores y b) en su memoria interna, la cual contiene información sobre los tiempos óptimos de encendido por cada condición de operación del motor. Ahora bien... quizá no todos sepan esto, pero después de determinar el tiempo de encendido, la PCM envía la Señal de Tiempo de Encendido (STE) al módulo de encendido. Justo en el momento cuando la señal STE se apaga, el módulo de encendido cortará el suministro de corriente a la bobina de encendido... esto es lo que produce un chispazo de 7000 Volts a 35000 Volts dentro del cilindro. Vamos analizando a detalle estos nuevos conceptos. Tipos de Sistemas de Encendido Los sistemas de encendido se dividen en tres categorías básicas: a) Distribuidor b) Encendido Electrónico con Sistema de Encendido Sin Distribuidor c) Sistema de Encendido Directo Componentes Esenciales del Sistema de Encendido Sin importar el tipo, los componentes esenciales son: a) Sensor de Posición del Cigueñal (Crankshaft Sensor) b) Sensor de Posición del Arbol de Levas (Camshaft Sensor) c) Módulo de Encendido d) Bobinas de Encendido, cableado, bujías e) PCM y f) Señales de diversos sensores Producción de Chispazo de Encendido La bobina de encendido debe generar suficiente poder para producir la chispa requerida para encender la mezcla aire/combustible. Para producir este poder, se necesita un campo magnético muy fuerte. Este campo magnético es creado por una corriente eléctrica. Esta corriente eléctrica casi siempre proviene de un fusible y fluye a través del circuito primaro dentro de la bobina. El circuito primario de la bobina tiene una resistencia eléctrica muy baja (de 1 a 4 ohms, aproximadamente), lo cual permite el fácil flujo de corriente. Entre más corriente fluya, mayor será la fuerza del campo magnético dentro de la bobina. El transistor de poder dentro del módulo de encendido maneja la alta corriente requerida por el circuito primario de la bobina. Otro requisito para producir altos voltajes es que el flujo de corriente en el embobinado primario debe apagarse rápidamente. Cuando el transistor dentro del módulo se apaga, el flujo de corriente se detiene momentáneamente y entonces se dice que el campo magnético "se colapsa". A medida que el campo magnético rápidamente colapsante se transporta a través del embobinado secundario, se produce voltaje (presión eléctrica). Si se crea suficiente voltaje para superar la resistencia en el circuito secundario de la bobina, ocurrirá flujo de corriente eléctrica y una chispa se producirá. Nota: Entre mayor sea la resistencia en el circuito secundario, se requerirá mayor voltaje para que la corriente fluya y la duración de la chispa será menor. Es importante cuando se cuente con el equipo para observar el patrón de la chispa de encendido en la pantalla de un osciloscopio. Señal de Tiempo de Encendido El flujo de corriente eléctrica en el embobinado primario es controlado por la PCM mediante la Señal de Tiempo de Encendido (STE). La señal STE es una señal de voltaje que apaga y prende al transistor principal dentro del módulo de encendido. Cuando el voltaje de la señal STE cae a 0 volts, el transistor dentro del módulo de encendido se apaga. Entonces, cuando la corriente dentro del embobinado primario se apaga, se dice que el campo magnético rápidamente colapsamente "induce" un alto voltaje en el embobinado secundario. Sólo si el voltaje es lo suficientemente alto para superar la resistencia del circuito secundario, tendremos una chispa en la bujía. Circuito de Control de Encendido En algunos sistemas de encendido electrónico, el circuito que transporta la corriente del embobinado primario se denomina Circuito de Control de Encendido (CCE). El CCE es activado y desactivado por el módulo de encendido con base en las órdenes provenientes de la señal STE. Módulo de Encendido Sin importar el fabricante, tipo o modelo de auto, la tarea primaria del módulo de encendido en todos ellos es activar y desactivar el flujo de corriente en el embobinado primario, con base en la señal de tiempo de encendido (STE) proveniente de la PCM. Dependiendo del fabricante, el módulo de encendido puede ser externo a la PCM o puede formar parte de ella. En ambos casos, dentro del módulo de encendido o en la PCM se desempeñan las siguientes funciones: a) Generación de Señal de Confirmación de Encendido (SCE) b) Control del Angulo de Contacto c) Circuito de Prevención de Arresto d) Circuito de Prevención de Sobrecargas de Voltaje e) Circuito de Límite de Corriente f) Señal del Tacómetro Es crítico que el módulo de encendido apropiado sea usado cuando se reemplace. Los módulos de encendido deben ser compatibles con el tipo de bobina y de PCM. Señal de Confirmación de Encendido La señal de confirmación de encendido (SCE) es utilizada por la PCM para determinar que el sistema de encendido está funcionando. Con base en la SCE, la PCM mantendrá el suministro de energía a la bomba de gasolina y a los inyectores de gasolina en la mayoría de los sistemas. Sin la SCE, un vehículo encendería momentáneamente y enseguida se apagaría. Sin embargo, en algunos Sistemas de Encendido Directo que incluyen al módulo de encendido dentro del cuerpo de la bobina, el motor funcionará. Método de Detección de SCE El método de nivel de corriente primaria mide el nivel de corriente eléctrica en el circuito primario. Los niveles mínimo y máximo de corriente se emplean para activar y desactivar la señal SCE. Los niveles varían con diferentes sistemas de encendido. Independientemente del método, el manual de reparación mostrará el patrón o te proveerá con las lecturas necesarias de voltaje para confirmar que el módulo de encendido está produciendo la señal SCE. La falta de SCE en muchos sistemas de encendido generará un DTC (código de diagnóstico). En algunos sistemas de encendido, la PCM tiene la capacidad de identificar cual bobina no produce una señal SCE y esto puede lograrse con dos métodos. El primer método usa una línea de SCE por cada bobina de encendido. Con el segundo método, la señal SCE viene de regreso a la PCM en una línea compartida con otras bobinas. La PCM es capaz de distinguir cual bobina no está operando basándose en el momento en que la señal SCE es recibida. Puesto que la PCM "sabe" cuando es que cada cilindro debe encenderse, sabe de cual bobina esperar la señal SCE. Cuando tengas que reparar un auto con un problema asociado a esta señales, la única forma en que podrás saber de cual método de control de encendido se trata y así puedas proceder con cautela es consultando diagramas de encendido que contengan dicha información. Control del Angulo de Contacto Este circuito controla la cantidad de tiempo que el transistor de poder (flujo de corriente a través del embobinado primario) está activo. La cantidad de tiempo durante la cual la corriente eléctrica fluye a través del embobinado primario, por lo general decrece a medida que las RPM's del motor aumentan, así que el voltaje inducido hacia el embobinado secundario disminuye. El control del ángulo de contacto se refiere al control electrónico de la cantidad de tiempo durante la cual la corriente eléctrica fluye a través del embobinado primario (es decir, el ángulo de contacto de acuerdo al viejo concepto de la velocidad rotativa del eje de un distribuidor). Circuito de Prevención de Arresto A bajas RPM's, el ángulo de contacto se reduce para prevenir flujo excesivo de corriente en el embobinado primario, y se aumenta a medida que la velocidad rotativa se incrementa para prevenir disminuciones de corriente en el primario. Este circuito obliga al transistor de poder a desactivarse si se "arresta" (si la corriente llegase a fluir continuamente por un período mayor que lo especificado), para proteger a la bobina de encendido y al transistor de poder. Circuito de Prevención de Sobrecargas de Voltaje Este circuito desactiva al transistor de poder si el voltaje de suministro de poder se eleva demasiado, para así proteger a la bobina de encendido y al transistor de poder. Circuito de Límite de Corriente El control de límite de corriente es un sistema que mejora la elevación del flujo de corriente en el embobinado primario, asegurándose que una corriente primaria constante esté fluyendo todo el tiempo, en el rango desde baja hasta alta velocidad, y de esta manera hacer posible la obtención de un alto voltaje secundario. La resistencia del embobinado primario se reduce al mejorar el rendimiento de elevación de corriente, lo cual incrementa el flujo de corriente eléctrica. Pero sin el circuito de límite de corriente, la bobina o el transistor se quemarían. Por este motivo, luego de que la corriente primaria ha alcanzado un valor fijo, es controlada electrónicamente por el módulo de encendido para evitar el flujo de una corriente mayor. En virtud de que la función de control de límite de corriente limita el nivel máximo de corriente en el primario de la bobina, es que ya no se necesita una resistencia balastra para protección de la bobina como se acostumbraba en los sistemas antiguos de distribuidor y platinos. Nota: puesto que los módulos de encendido son manufacturados para empatar las características de las bobinas de encendido, las funciones y construcción de cada tipo son diferentes. Por este motivo, si cualquier módulo y bobina diferentes de las especificadas se combinan entre sí, el módulo o la bobina se dañarán. Por lo tanto, siempre use las refacciones correctas específicas para cada vehículo. No improvise ni haga adaptaciones. Señal de Tacómetro En algunos sistemas la señal de tacómetro es generada en el mismo módulo de encendido. Señal del Sensor de Posición del Cigueñal (Crankshaft) y Señal de Posición del Sensor del Arbol de Levas (Camshaft) Aunque existen diferentes tipos de sistemas de encendido, el empleo de señales de sensores de posición del cigueñal y del árbol de levas son consistentes. La señal del sensor de posición del cigueñal indica la posición del cigueñal y las RPM's del motor. La señal del sensor de posición del árbol de levas proveé la identificación del cilindro. Al comparar la señal del árbol de levas contra la del cigueñal, la PCM es capaz de identificar al cilindro que está en carrera de compresión. Esto es necesario para calcular el ángulo del cigueñal (ángulo de tiempo de encendido inicial), identificar cual bobina activar en sistemas de encendido directo (ignición independiente) y cual inyector energizar en sistemas secuenciales de inyección de combustible. A medida que los sistemas de encendido y los motores evolucionaron, ha habido modificaciones a las señales de los sensores de posición del cigueñal y del árbol de levas. Los rotores de tiempo, o engranes del árbol, tienen diferente número de dientes. En algunos sensores de posición del árbol de levas, una muesca es utilizada en lugar de un diente para generar una señal. Sin importar el arreglo y aun antes de que levantes el capó del auto, tú puedes determinar el estilo empleado simplemente examinando el diagrama de encendido electrónico. Autor Beto Booster http://www.encendidoelectronico.com

Clasificación: 1.4 (7 votos)
Está prohibido copiar este artículo. Artículo.org no permite la sindicación de sus artículos.
Acerca del autor

Reparalo Facil Ya!

Comentarios
joselo 25 de Nov, 2010
0

hola disculpala confianza, tengo un problema con mi golf gl mod 95.Ha quemado muchas veces el modulo de la bobina presentando fallas diversas por este motivo desde no encender mas hasta presentar jaloneos a cierto regimen de revoluciones y hasta otra falla qe era la de no encender despues de haberlo usado un rato y apagarlo por unos 20 minutos, al tratar de encenderlo de nuevo no encendia , habia que esperar otro buen rato y ahi si encendia. en fin.hasta que un mecanico opto por reemplazar solamente el modulo y no la bobina completa, lo cambio por un modulo de chevrolet segun me dijo. pero noto un temblor inusual en revoluciones minimas y creo que no se comporta fluidamente en las bajas revoluciones. crees que el modulo pueda influir en eso o causar otros problemas

¿Tiene comentarios o preguntas para el autor?
Artículos recomendados
¿Cómo convertir un motor diesel en biodiesel?
Escrito por Juan Camilo Cano, Añadido: 18 de Nov, 2010
La buena noticia es que un motor diesel ya está diseñado para aceptar los combustibles biodiesel, por lo que no tiene que ser completamente modificado para convertirse en "verde". El inventor del motor diesel, Rudolf Diesel, inicialmente tenía previsto utilizar aceite de maní como fuente de combustible para...
veces visto 9146 Veces vista:   comentarios 2 Comentarios
Cambia tu embotelladora por una nueva
Escrito por Angélica Páez, Añadido: 03 de Dic, 2010
Al consolidar una empresa que funciona correctamente muchos empresarios suelen estar a gusto con la maquinaria que poseen debido a que les ha dado buenos resultados. Esas embotelladoras “de toda la vida” siempre han funcionado al cien por ciento, pero se están perdiendo una mayor productividad al no renovar...
veces visto 1912 Veces vista:   comentarios 0 Comentarios
Los Sistemas de suspencion antibalanceo
Escrito por mediablogs.net, Añadido: 01 de Ago, 2010
La inclinación de los automóviles a la hora de trazar las curvas plantea algunos inconvenientes que afectan a la estabilidad del vehículo. La propia inclinación del vehículo varía la la caída de las ruedas por lo que los neumáticos no apoyan toda la banda de rodadura sobre el filme, de forma que trabajan...
veces visto 3313 Veces vista:   comentarios 0 Comentarios
Convierte tu auto de gasolina a eléctrico
Escrito por carkelsor, Añadido: 29 de Sep, 2011
Convirtiendo un carro de gasolina a eléctrico. Sabemos que suena complicado. Pero es mucho mas fácil de lo que piensas. Únete a los miles de personas que ya no dependen del petróleo extranjero y al mismo tiempo están ahorrando muchísimo dinero. Estos son vehículos de la producción regular de ford,...
veces visto 3601 Veces vista:   comentarios 0 Comentarios
Tips a la hora de comprar un auto
Escrito por ale_verastegui, Añadido: 22 de Oct, 2010
Comprar un auto, representa una de las inversiones más grandes que probablemente realizarás en tu vida; es por esta misma razón, que es importante que a la hora de comprar auto, no seas víctima de ningún malintencionado vendedor y menos, que  te arrepientas de la decisión que tomes. Es por estas razones,...
veces visto 1371 Veces vista:   comentarios 0 Comentarios