Anunciese Aquí

Registro automático

Acceder con Twitter

top articulo
twitter
facebook
Rss
miércoles 11 de diciembre del 2024
Lea, publique artículos gratis, y comparta su conocimiento
Usuario Clave ¿Olvidó su clave?
¿Iniciar sesión automáticamente en cada visita?
Inserte su correo electronico

El Álgebra, rama fundamental de las matemáticas

veces visto 13406 Veces vista   comentario 0 Comentarios

El Álgebra, rama fundamental de las matemáticas

El Álgebra es una Rama de las Matemáticas en la que se usan letras para representar relaciones aritméticas. Al igual que en la aritmética, las operaciones fundamentales del álgebra son adición, sustracción, multiplicación, división y cálculo de raíces. La aritmética, sin embargo, no es capaz de generalizar las relaciones matemáticas, como el teorema de Pitágoras, que dice que en un triángulo rectángulo el área del cuadrado que tiene como lado la hipotenusa es igual a la suma de las áreas de los cuadrados cuyos lados son los catetos.

El álgebra clásica, que se ocupa de resolver ecuaciones, utiliza símbolos en vez de números específicos y operaciones aritméticas para determinar cómo usar dichos símbolos. El álgebra moderna ha evolucionado desde el álgebra clásica al poner más atención en las estructuras matemáticas. Los matemáticos consideran al álgebra moderna como un conjunto de objetos con reglas que los conectan o relacionan. Así, en su forma más general, se dice que el álgebra es el idioma de las matemáticas.

La historia del álgebra comenzó en el antiguo Egipto y Babilonia, donde fueron capaces de resolver ecuaciones lineales como (ax = b) y cuadráticas (ax2 + bx = c), así como ecuaciones indeterminadas como x2 + y2 = z2, con varias incógnitas. Los antiguos babilonios resolvían cualquier ecuación cuadrática empleando esencialmente los mismos métodos que hoy se enseñan.

Los matemáticos alejandrinos Herón y Diofante continuaron con la tradición de Egipto y Babilonia, aunque el libro Las aritméticas de Diofante es de bastante más nivel y presenta muchas soluciones sorprendentes para ecuaciones indeterminadas difíciles. En las civilizaciones antiguas se escribían las expresiones algebraicas utilizando abreviaturas sólo ocasionalmente; sin embargo, en la edad media, los matemáticos árabes fueron capaces de describir cualquier potencia de la incógnita x, y desarrollaron el álgebra fundamental de los polinomios, aunque sin usar los símbolos modernos.

Esta álgebra incluía multiplicar, dividir y extraer raíces cuadradas de polinomios, así como el conocimiento del teorema del binomio. El matemático, poeta y astrónomo persa Omar Khayyam mostró cómo expresar las raíces de ecuaciones cúbicas utilizando los segmentos obtenidos por intersección de secciones cónicas, aunque no fue capaz de encontrar una fórmula para las raíces.

A principios del siglo XVI los matemáticos italianos Scipione del Ferro, Tartaglia y Gerolamo Cardano resolvieron la ecuación cúbica general en función de las constantes que aparecen en la ecuación. Ludovico Ferrari, alumno de Cardano, pronto encontró la solución exacta para la ecuación de cuarto grado y, como consecuencia, ciertos matemáticos de los siglos posteriores intentaron encontrar la fórmula de las raíces de las ecuaciones de quinto grado y superior.

El foco de atención se trasladó de las ecuaciones polinómicas al estudio de la estructura de sistemas matemáticos abstractos, cuyos axiomas estaban basados en el comportamiento de objetos matemáticos, como los números complejos, que los matemáticos habían encontrado al estudiar las ecuaciones polinómicas. Dos ejemplos de dichos sistemas son los grupos y las cuaternas, que comparten algunas de las propiedades de los sistemas numéricos, aunque también difieren de ellos de manera sustancial.

Clasificación: 1.7 (34 votos)
Está prohibido copiar este artículo. Artículo.org no permite la sindicación de sus artículos.
Acerca del autor

Hola amigos... SOY TECNICO EN ELECTRONICA... Quiero compartir esta página a personas interesadas en aprender  y compartir. Me estaras alludando solo viendo estos videos. SOLO ELECTRONICA

¿Tiene comentarios o preguntas para el autor?
Artículos recomendados
El origen del término Geometría
Escrito por carkelsor, Añadido: 06 de Mar, 2012
La Geometría es la rama de las matemáticas que se ocupa de las propiedades del espacio. En su forma más elemental, la geometría se preocupa de problemas métricos como el cálculo del área y diámetro de figuras planas y de la superficie y volumen de cuerpos sólidos. Otros campos de la geometría son la...
veces visto 12605 Veces vista:   comentarios 0 Comentarios
Aprende todo sobre geometria basica
Escrito por ingedgar, Añadido: 24 de Oct, 2009
La geometría trata de la medición y de las propiedades de puntos, líneas, ángulos, planos y sólidos, así como de las relaciones que guardan entre sí. A continuación veremos algunos conceptos basicos relacionados con la geometría que te ayudaran mucho para iniciar con exito, el estudia de esta linda...
veces visto 5484 Veces vista:   comentarios 0 Comentarios
Pi
Escrito por jaumecanals, Añadido: 14 de Mar, 2008
Por ahora, nadie ha dado con él, quizás por eso tiene tantos admiradores. En el teclado de mi ordenador no he encontrado el “Pi” y de ahí que haya ido a buscarlo en el DRAE donde cuenta entre otras cosas que a parte de ser la decimosexta letra del alfabeto griego, resulta ser un símbolo de la razón de la...
veces visto 3607 Veces vista:   comentarios 0 Comentarios
Si vamos a apostar en la lotería hagámoslo con ciencia.
Escrito por Nelson Estevez, Añadido: 17 de Jun, 2014
Por más que personalmente creo que la lotería no contribuye en mucho a la educación por sí misma me alegro que los estados que la permiten dediquen las ganancias al desarrollo de los sistemas escolares. Sin embargo es una realidad de la cultura moderna y creo que va a seguir por mucho tiempo. Por otra parte...
veces visto 5572 Veces vista:   comentarios 0 Comentarios
¿Qué es Half Life y cómo calcularlo?
Escrito por James_Johnson28, Añadido: 10 de Feb, 2020
Una calculadora de vida media es una herramienta que ayuda a comprender los fundamentos de la desintegración radiactiva. No solo puede usarlo para calcular la vida media, sino también para encontrar la cantidad inicial y final de cualquier sustancia. Este artículo también presenta la definición y
veces visto 1350 Veces vista:   comentarios 0 Comentarios